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Série 2b Solutions 

Exercise 2b.1 – Poisson effect  

Considering the statue seen in Figure 2b.1, we want to study the lateral strain of the column 

holding it. The statue’s mass is 883 kg and its weight is uniformly spread on the column’s cross-section. 

The material of the column is brittle. The Young’s modulus of the material is 1.10 GPa. Its Poisson’s 

ratio is 0.34. The height of the column is 2.1 meter in the two cases. 

 

 

Figure 2b.1 | Schematic of the column with the statue on top and the two different types of cross -

sectional areas. 

Between cross-section a and b, which is the best solution to minimize the lateral strain to 

which the column is submitted? Verify your assumption by calculating the lateral strain of the 

column for the two following cases: 

a) The column is full and its radius is 50 cm 

b) The column is hollow in the center: Its external radius is 50 cm and its internal radius 

is 49 cm. 
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Solution 

Free body diagram 

 

Diagram of the column showing the external force (weight of the statue), the reaction and the internal 

force in either side of the cut. 

 

Objective:  

a- 𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 𝜀𝑙𝑎 

b- 𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 𝜀𝑙𝑏  

Given: 

m, mass of the statue  

𝐸, Young’s modulus of the column material 

𝜈, Poisson’s ratio of the column material 

𝐻, Height of the statue (useless parameter) 

a. r, radius of the cylinder 

b. 𝑟𝑜𝑢𝑡, external radius of the cylinder, 𝑟𝑖𝑛𝑡, internal radius of the cylinder 

 

Formulas: 

𝐹 = 𝑚 · 𝑔 (1) 

With 𝐹 being the weight of the statue and 𝑔 the gravitation constant 
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𝜎𝑦 =
𝑁

𝐴
 (2) 

Where 𝐴 is the cross-section of the column that is given by: 

𝐴𝑎 = 𝜋𝑟
2;    𝐴𝑏 = 𝜋(𝑟𝑜𝑢𝑡

2 − 𝑟𝑖𝑛
2 ) (3) 

Where 𝑟 is the radius of the column in (a) and 𝑟𝑜𝑢𝑡 and 𝑟𝑖𝑛 are respectively the outer and inner 

radius of the column in (b). 

Hooke’s law in 1D 

𝜎𝑦 = 𝐸 · 𝜀𝑦 (4) 

where 𝜎 is the normal internal stress of the material, 𝜀 is the axial strain of the material and 𝐸 is 

the Young’s modulus of the material. And, finally, we have the axial-lateral strain relation, only valid 

when the load is uniaxial, i.e. 𝜎𝑦 ≠ 0, 𝜎𝑥 = 𝜎𝑧 = 𝜏𝑥𝑦 = 𝜏𝑥𝑧 = 𝜏𝑦𝑧 = 0 

𝜀𝑥 = 𝜀𝑧 = −𝜈 · 𝜀𝑦 (5) 

For any of the three cases, we will have an equilibrium situation 

𝑁 + 𝐹 = 0 → 𝑁 = −𝐹 = −𝑚 · 𝑔 (6) 

Therefore, following this statement and combining with equation (2) we have 

𝜎𝑦 = −
𝑚𝑔

𝐴
 (7) 

We then apply Hooke’s law 

𝜎𝑦 = 𝐸𝜀𝑦 → 𝜀𝑦 =
𝜎𝑦

𝐸
= −

𝑚𝑔

𝐸𝐴
 (8) 

And thus, we conclude that for any of the columns in the problem 

𝜀𝑥 = 𝜀𝑧 = 𝜈
𝑚𝑔

𝐴𝐸
 (9) 

Calculation 

The stress is compressive. We can now take into account case by case 

a.  

𝐴𝑎 = 𝜋𝑟
2 → 𝜀𝑥,𝑧𝑎 =

𝑚𝑔𝜈

𝜋𝑟2𝐸
 (10) 

b.  

𝐴𝑏 = 𝜋(𝑟𝑜𝑢𝑡
2 − 𝑟𝑖𝑛

2 ) → 𝜀𝑥,𝑧𝑏 =
𝑚𝑔𝜈

𝜋(𝑟𝑜𝑢𝑡
2 − 𝑟𝑖𝑛

2 )𝐸
 (11) 

Numerical application 

a. 

𝜀𝑥,𝑧𝑎 = 3.41 · 10
−6 (12) 

b.  

𝜀𝑥,𝑧𝑏 = 8.61 · 10
−5 (13) 
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Exercise 2b.2 – Hooke’s Law in 3D 

We apply a load F on a cubic piece of 1 mm width as shown in Figure 2b.2. The material’s Young 

modulus is 200 GPa, Poisson’s ratio 0.25 and the measured stress tensor is given as follow. We suppose 

the material to be homogeneous and isotropic. We worked at constant ambient temperature (20⁰C). 

 

a) Determine the compliance matrix of the material 

b) Determine the stress vector of this cube, when submitted to this load 

c) Determine the strain vector of this cube, when submitted to this load 

d) What has been the volume variation of the solid after the load has been applied? 

  

𝜎 = [
100 30 80
30 180 50
80 50 220

] MPa  

 

Figure 2b.2 | Stress components on a 3D cube 
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Solution 

a) Determine the compliance matrix of the material 

We define the compliance matrix. Where 𝜈 is the Poisson’s ratio of the material. 

[𝐶] =
1

𝐸

(

  
 

1
−𝜈
−𝜈
0
0
0

−𝜈
1
−𝜈
0
0
0

−𝜈
−𝜈
1
0
0
0

0
0
0

2(1 + 𝜈)
0
0

0
0
0
0

2(1 + 𝜈)
0

0
0
0
0
0

2(1 + 𝜈))

  
 

 

(14) 

 

The numerical values of the compliance matrix are found by substituting the values of Poisson’s 

ratio and Young’s modulus and we get 

[𝐶] =

(

 
 

. 005
−.00125
−.00125

0
0
0

−.00125
. 005

−.00125
0
0
0

−.00125
−.00125
. 005
0
0
0

0
0
0

. 0125
0
0

0
0
0
0

. 0125
0

0
0
0
0
0

. 0125)

 
 
GPa−1 

(15) 

 

b) Determine the stress vector of this cube, when submitted to this load 

We start by the definition of stress tensor: 

𝜎̂ = [

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜎𝑦𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧𝑧

] 
(16) 

 

The stress tensor can also be written in the form of a vector 

𝜎⃗ =

(

 
 
 

𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜏𝑥𝑦
𝜏𝑥𝑧
𝜏𝑦𝑧)

 
 
 

 

 (17) 

We take the given stress tensors and put it into vector form, to get the stress vector 

𝜎⃗ =

(

  
 

100
180
220
30
80
50 )

  
 
 MPa 

    (18) 
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c) Determine the strain vector of this cube, when submitted to this load 

 

We start with the generalized Hooke’s law  

𝜀 = [𝐶]𝜎⃗ (19) 

Inserting into this equation the matrix from equation 18 and the tensor from equation 15 we can 

find the values of the strain vector 

𝜀 =

(

  
 

0
0.5
0.75
0.375
1

0.625)

  
 
∙ 10−3 (20) 

 

d) What has been the volume variation of the cube after the load has been applied? 

We give the volume relative variation in correspondence to the stress parameters. 

Δ𝑉

𝑉
= 𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧 =

1 − 2ν

E
(𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧) 

(21) 

 

Such that if we fill in either the strains calculated, or the given stresses, we find 

Δ𝑉 = 𝑉
1 − 2ν

E
(𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧) → Δ𝑉 = 1.25 ∙ 10

−12 m3 
(22) 
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Exercise 2b.3 – Poisson Ratio and Elasticity modulus 

Consider a magnesium plate (seen in Figure 2b.3.1) in biaxial stress being subjected to the tensile 

stresses σx = 24 MPa and σy =12 MPa. The corresponding strains in the plate are εx = 440·10-6 and εy = 

80·10-6.  

 

Figure 2b.3.1 | Block with Applied Stresses 

 

a) Determine the Poisson’s ratio and Young’s modulus of the material 

b) Determine the volume change in percentage of the material under these loads and strains 

 

Suppose the magnesium plate is now fixed to the two fixed plates above and below, as shown in 

Figure 2b.3.2, which prevent any deformation in the z axis. When the plane-stresses are now applied 

a reaction force causing a stress of 12.6 MPa will occur on the body. Consider the same Poisson’s 

ratio and Young’s modulus 

c) Determine how these constraints influences the volume change of the material 

 

Figure 2b.3.2 | Block with constraints applied on the two sides of the plate  
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Solution 

a) Determine the Poisson’s ratio and Young’s modulus of the material. 

We start with the generalized Hooke’s equations 

𝜀𝑥 =
1

𝐸
(𝜎𝑥 − 𝜈(𝜎𝑦 + 𝜎𝑧)) (1) 

𝜀𝑦 =
1

𝐸
(𝜎𝑦 − 𝜈(𝜎𝑥 + 𝜎𝑧)) (2) 

 

Since we know that 𝜎𝑥 = 2𝜎𝑦 and  𝜎𝑧 = 0 we can write 

𝜀𝑥 =
1

𝐸
(𝜎𝑥 − 𝜈𝜎𝑦)  and 𝜀𝑦 =

1

𝐸
(𝜎𝑦 − 2𝜈𝜎𝑦) (3) 

 

We can subtract the two parts from each other to eliminate ν 

𝜀𝑥 −
1

2
𝜀𝑦 =

1

𝐸
(𝜎𝑥 − 𝜈𝜎𝑦) −

1

2𝐸
(𝜎𝑦 − 2𝜈𝜎𝑦) =

1

𝐸
(𝜎𝑥 − 𝜈𝜎𝑦 −

𝜎𝑦

2
+ 𝜈𝜎𝑦) (4) 

We can then rewrite this expression in terms of E and rewrite to solve 

𝐸 =
𝜎𝑥 −

1
2
𝜎𝑦

𝜀𝑥 −
1
2 𝜀𝑦

=
(24 − 6) ∗ 106

(440 − 40) ∗ 10−6
= 45 GPa (5) 

 

Then we can rewrite either one of the formulas to find ν 

𝐸𝜀𝑥 = 𝜎𝑥 − 𝜈𝜎𝑦 (6) 

𝜈 =
𝜎𝑥 −  𝐸𝜀𝑥
𝜎𝑦

 (7) 

𝜈 =
24 ∗ 106 −  45 ∗ 109 ∗ 440 ∗ 10−6

12 ∗ 106
= 0.35 (8) 

 

b) Determine the volume change of the material in terms of its original volume V 

The volume change of any linear elastic body is defined as 

∆𝑉

𝑉
= 𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧 (9) 

Using the fact that the there’s no stress in the z direction (σz = 0) we start with the three simplified 

strain components by means of the generalized Hooke’s law 

𝜀𝑥 =
1

𝐸
(𝜎𝑥 − 𝜈𝜎𝑦) (10) 

𝜀𝑦 =
1

𝐸
(𝜎𝑦 − 𝜈𝜎𝑥) (11) 

𝜀𝑧 =
−𝜈

𝐸
(𝜎𝑥 + 𝜎𝑦) (12) 

Which if we calculate these, we find 
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𝜀𝑥 =
(24 − 0.35 ∗ 12) ∗ 106

45 ∗ 109
= 4.4 ∗ 10−4 (13) 

𝜀𝑦 =
(12 − 0.35 ∗ 24) ∗ 106

45 ∗ 109
= 0.8 ∗ 10−4 (14) 

𝜀𝑧 = −
0.35

45 ∗ 109
(24 + 12) ∗ 106 = −2.8 ∗ 10−4 (15) 

Inserting this in the formula for the volume change we find that 

∆𝑉 = (𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧)𝑉 = 2.4 ∗ 10
−4 ∗ 𝑉 (16) 

 

This means that the body will change 0.024% in terms of volume. 

 

c) Determine how these constraints influences the volume change of the material 

With the plates in place the block can no longer expand in the z direction and thus the strain in 

this direction becomes zero (εz = 0). However, this constraints does ensure a counter force on 

the plate at a given value of σz = 12.6 MPa. To now calculate the volume change we need to 

recalculate the other two strain components 

𝜀𝑥 =
1

𝐸
{𝜎𝑥 − 𝜈(𝜎𝑦 + 𝜎𝑧)} (17) 

𝜀𝑦 =
1

𝐸
{𝜎𝑦 − 𝜈(𝜎𝑥 + 𝜎𝑧)} (18) 

Which, with the provided information we find as 

𝜀𝑥 =
{24 − 0.35(12 + 12.6)} ∗ 106

45 ∗ 109
= 3.42 ∗ 10−4 (19) 

𝜀𝑦 =
{12 − 0.35(24 + 12.6)} ∗ 106

45 ∗ 109
= −1.8 ∗ 10−5 (20) 

That means that the new volume change is  

∆𝑉′ = (𝜀𝑥 + 𝜀𝑦)𝑉 = 3.24 ∗ 10
−4 ∗ 𝑉 (21) 

∆𝑉′ − ∆𝑉 = 0.84 ∗ 10−4 ∗ 𝑉 (22) 

The new volume change is 0.032% and thus the constraint increases the volume by an additional  

0.0084% 
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Exercise 2b.4 – Pipe casing  

A plastic cylindrical pipe is inserted as a liner inside a cast-iron pipe. We compress the plastic pipe 

with a load 𝐹. We use the parameters listed in the following table and represented in Figure 2b.4. 

Parameters Plastic pipe Cast-iron pipe 

Length 𝐿𝑝 = ? 𝐿𝑐 = 0.205 𝑚 

Diameter 
𝑑1 = 109 𝑚𝑚 

Inner : 𝑑2 = 110 𝑚𝑚 

Outer : 𝑑3 = 115 𝑚𝑚 

Young Modulus 𝐸𝑝 = 2.1 𝐺𝑃𝑎 𝐸𝑐 = 170 𝐺𝑃𝑎 

Poisson’s ratio 𝜈𝑝 = 0.4 𝜈𝑐 = 0.3 

 

 

Figure 2b.4 | Plastic pipe in cast-iron pipe 

We compress the plastic pipe with 𝐹 so that the final length of both pipes is the same and also, at 

the same time, the final outer diameter of the plastic pipe is equal to the inner diameter of the cast-

iron pipe so that no stress is applied on the cast-iron pipe. 

a) Derive a formula for the required initial length 𝐿𝑝 with the Poisson’s ratio (not as a 

function of F). Calculate the value of Lp. 

b) What is the final stress along in the vertical and the radial direction in the plastic and in 

the cast-iron pipe? 

c) What is the required force 𝐹? 

d) Determine the ratio between final and initial volumes for the plastic pipe. 
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Solution 

a) Derive a formula for the required initial length 𝐿𝑝 with the Poisson’s ratio (not as a 

function of F). Calculate the value of Lp. 

The lateral strain resulting from compression of the plastic pipe must close the gap between it and 

the cast-iron one. Therefore, we consider that the lateral displacement for this calculation covers the 

distance 𝑑2 − 𝑑1, ie 1 mm. We call it 𝛥𝑑.  

The increase in the outer diameter of the plastic pipe leads to an increase in the radius to 

accommodate an increase in the circumference length. Therefore, we can write for the final diameter of 

the plastic pipe that: 

𝑑1,𝑓𝑖𝑛𝑎𝑙 = 𝑑1 · (1 + 𝜀𝑟) = 𝑑2 (1) 

The accompanying compressive normal stress in the plastic pipe is obtained using the Poisson’s 

ratio formula which describes the relation between compressive and radial strain. 

𝜈𝑝 = −
𝜀𝑝,𝑟
𝜀𝑝,𝑧

→ 𝜀𝑝,𝑧 = −
𝜀𝑝,𝑟
𝜈𝑝
= −

𝛥𝑑

𝜈𝑝𝑑1
 (2) 

Now, by definition, we determine the axial deformation of the plastic pipe. 

𝛿𝑝 = 𝜀𝑝,𝑧𝐿𝑝 (3) 

Knowing also that 

𝛿𝑝 = 𝐿𝑐 − 𝐿𝑝 (4) 

Equalizing both equations, we get 

𝜀𝑝,𝑧𝐿𝑝 = 𝐿𝑐 − 𝐿𝑝 → 𝐿𝑝 =
𝐿𝑐

1 + 𝜀𝑝,𝑧
 (5) 

By substituting the strain, we get and we find 

𝐿𝑝 =
𝐿𝑐

1 −
𝛥𝑑
𝜈𝑝𝑑1

=
0.205[𝑚]

1 −
110 − 109[𝑚𝑚]
0.4 ∗ 109[𝑚𝑚]

= 0.210𝑚 
(6) 

 

b) What is the final stress along in the vertical and the radial direction in the plastic and in 

the cast-iron pipe? 

For the cast-iron pipe, there is no stress since it is not affected by the load. 

𝜎𝑐,𝑧 = 𝜎𝑐,𝑟 = 𝜎𝑝,𝑟 = 0 𝑃𝑎 (7) 

 For the plastic pipe, there is only stress in the axial direction since it is extended freely laterally until 

it meets the wall. The normal stress in the plastic pipe is thus calculated thanks to Hooke’s law in the 

axial direction 

𝜀𝑝,𝑧 = −
𝜀𝑝,𝑟

𝜈𝑝
 𝑜𝑟 𝜀𝑝,𝑧 =

𝛥𝐿

𝐿𝑝
= 
𝐿𝑐−𝐿𝑝

𝐿𝑝
  (8) 

𝜎𝑝,𝑧 = 𝐸𝑝𝜀𝑝,𝑧 = −𝐸𝑝
𝛥𝑑

𝜈𝑝𝑑1
 (9) 
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With 𝐸𝑝 being the Young modulus of the material that composes the plastic pipe. Finally filling in 

the values we find the value of the normal stress in the pipe. 

𝜎𝑝,𝑧 = −𝐸𝑝
𝛥𝑑

𝜈𝑝𝑑1
= −48 MPa  

 or 𝜎𝑝,𝑧 = 𝐸𝑝
𝛥𝐿

𝐿𝑝
= 2.1[𝐺𝑝𝑎] ∗

0.205 − 0.210[𝑚]

0.210[𝑚]
= −50.0 MPa  

(small rouding error depending on precision of value Lp used)     

(10) 

 

 

c) What is the required force 𝐹? 

We start by the definition of the axial strain 

𝜀𝑝,𝑧 =
𝛥𝐿

𝐿0
 (11) 

where 𝐿0 is the initial length of the zone studied, 𝛥𝐿 is the deformation the pipe is enduring, with 

𝜀𝑝,𝑧 being the normal strain when the load is acting. As in our problem we only have stress in the axial 

direction (𝑧) we can use the 1-dimensional form of the Hooke’s Law 

𝜎𝑝,𝑧 = 𝐸𝑝𝜀𝑝,𝑧  (12) 

To calculate the strain in the radial direction we again use Poisson’s ratio 

𝜀𝑝,𝑟 = −𝜈𝑝 · 𝜀𝑝,𝑧 = −
𝜈𝑝

𝐸𝑝
𝜎𝑝,𝑧 (13) 

where 𝜀𝑟 is the substructure lateral strain when the load is acting, 𝜀𝑧 is the pipe axial strain when 

the load is acting, 𝜈𝑝 is the Poisson’s ratio of the pipe’s material. We know that we can define the applied 

stress and rewrite to find the applied load 𝐹 

𝜎𝑝,𝑧 =
𝐹

𝐴𝑝
→= 𝐹 = 𝐴𝑝𝜎𝑝,𝑧 =

π𝑑1
2

4
𝜎𝑝,𝑧  (14) 

The required downwards load to compress the plastic pipe as wanted is thus determined by 

𝐹 = 𝜎𝑝,𝑧𝐴𝑝 = 𝐸𝑝𝜀𝑝,𝑧𝐴𝑝 = −𝐸𝑝
𝛥𝑑

𝜈𝑝𝑑1

𝜋𝑑1
2

4
= −𝐸𝑝

𝛥𝑑

𝜈𝑝

𝜋𝑑1
4

 

𝑜𝑟 𝐹 =  𝐸𝑝
𝛥𝐿

𝐿𝑝

𝜋𝑑1
2

4
 

(15) 

Finally, by plugging in the numbers we find the value of the applied force 

𝐹 = −2.1[Gpa] ∗
110 − 109[𝑚𝑚]

0.4
∗
𝜋 ∗ 109[mm]

4
= −449.4𝑘𝑁 

𝑜𝑟 𝐹 =  2.1[𝐺𝑝𝑎] ∗
0.205 − 0.210

0.210
∗
𝜋 ∗ 109[mm] ∗ 109[mm]

4
= −466.6𝑘𝑁 

(16) 

(small rouding error depending on precision of value Lp used) 

F is negative, therefore facing downwards and thus compressive. 
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d) Determine the ratio between final and initial volumes for the plastic pipe. 

The initial volume and final volume of the pipe are given by 

𝑉𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙
= 𝐿𝑝𝐴𝑝 

𝑉𝑝𝑓𝑖𝑛𝑎𝑙
= 𝐿𝑐𝐴P,𝑓𝑖𝑛𝑎𝑙 

 (17) 

The ratio of the final to initial volume is therefore 

𝑉𝑝𝑓𝑖𝑛𝑎𝑙

𝑉𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙
=
𝐿𝑐𝐴𝑝𝑓𝑖𝑛𝑎𝑙
𝐿𝑝𝐴𝑝

  (18) 

𝑉𝑝𝑓𝑖𝑛𝑎𝑙

𝑉𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙
=
0.205[m] ∗

𝜋 ∗ 110[𝑚𝑚] ∗ 110[𝑚𝑚]
4

0.210[m] ∗
𝜋 ∗ 109[𝑚𝑚] ∗ 109[𝑚𝑚]

4

= 0.995  (19) 
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Exercise 2b.5 – Dielectric actuator design 

A Dielectric Actuator is an actuator which finds it’s working principle in an applied electric field 

between two stretchable electrodes. As a voltage is applied, the two electrodes are attracted to each 

other through electrostatic attraction. A dielectric film prevents the flow of current. 

The electrostatic force within the dielectric, under an applied electric field, is given as 

F𝑧 = −
1

2

𝑄𝑝
2

𝜀𝑑𝐴𝑝
  

Where 𝐴𝑝 is the planar cross-sectional area (x-y plane) and 𝜀𝑑  the dielectric permittivity.  The charges 

in the plane are given by 

𝑄𝑝 =
𝑉𝜀𝑑𝐴𝑝
𝑑0

  

Where 𝑑0 stands for the dielectric thickness and  𝑉 is the applied voltage. When the dielectric is 

squeezed by the applied voltage, it also expands in-plane. In elastomers the compression and the 

expansion are mechanically coupled due to their incompressibility. The tensile stress due to this 

expansion equals to the compressive stress (this is one way to find the stress components):  

 

𝜎𝑥 = 𝜎𝑦 = −𝜎𝑧 

 

Now suppose we have the actuator, as shown in figure 2.b.5, with a 200 μm thick dielectric made 

out of silicone which we actuate this under a voltage of 1 [kV]. The dielectric permittivity is 35.4*10-12 

[N/V2], and the material has a Poisson’s ratio of 0.5, as well as an elastic modulus of 1.2 [MPa]. The 

material behaves isotropic and has linear elastic properties. We ignore the stiffness and any influence 

of the top electrodes. 

 

a) Under the given load, calculate the tensile and compressive stresses in the dielectric 

b) For the calculated stresses, find the strain components of the dielectric  

c) Give the change in volume of the dielectric 

d) Suppose we introduce an additional shear stress of 1 kPa in the positive x direction on 

the x-y plane. What effect does this have on the already present strain state and change in 

volume? 

 

Figure 2b.5 | (a) Sketch of the problem, (b) working principle of a Dielectric Actuator 
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Solution 

 

a) Under the given load, calculate the stress in the dielectric 

We know that we can safely ignore the stiffness of the top electrodes, the forces given by the 

problem are as per 

 F𝑧 = −
1

2

𝑄𝑝
2

𝜀𝑑𝐴𝑝
 (1) 

 

We then insert the definitions of respective charges into equation 1 to get the definitions of the 

forces 

F𝑧 = −
1

2
(
𝑉2𝜀𝑑

2𝐴𝑝
2

𝜀𝑑𝑑0
2𝐴𝑝

) = −
1

2
𝜀𝑑𝐴𝑝 (

𝑉

𝑑0
)
2

 (2) 

 

Then dividing the force by its respective surface, the tensile stress in the dielectric will be equal to 

σ𝑧 =
F𝑧
𝐴𝑝

 (3) 

 

Where if we insert the definition of the force inside of equation 3, we will retrieve the tensile 

Maxwell Stresses. 

σ𝑧 = −
1

2
𝜀𝑑 (

𝑉

𝑑0
)
2

 (4) 

 

And then resulting from the given stress relation we find 

𝜎𝑥 = 𝜎𝑦 = −𝜎𝑧 =
1

2
𝜀𝑑 (

𝑉

𝑑0
)
2

 (5) 

 

This differs from what we are used to, as generally in mechanics a vertical load doesn’t cause stress 

in the other directions! However, since we’re dealing with electrostatics these kinds of mechanical 

forces are the result of the electrical charges. 

 

With the provided values we can thus calculate the stresses present in the dielectric. 

𝜎𝑧 = −
1

2
𝜀𝑑 (

1000

200 ∗ 10−6
)
2

 ≈ −442.25 [Pa] 

σ𝑥 = σ𝑦 = −𝜎𝑧 = 442.25 [Pa] 

(6) 
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b) For the calculated stress, find the strain components of the dielectric  

Starting from the Compliance matrix for isotropic materials, and knowing the relations between the 

stresses are provided as in equation 3, we can simplify it and retrieve the strain equations 

(

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
) =

1

𝐸
(
1 −𝑣 −𝑣
−𝑣 1 −𝑣
−𝑣 −𝑣 1

)(
𝜎
𝜎
−𝜎
) (7) 

𝜀𝑥 = 𝜀𝑦 =
1

𝐸
(𝜎 − 𝜈𝜎 + 𝜈𝜎) =

𝜎

𝐸
 

𝜀𝑧 =
1

𝐸
(−𝜈𝜎 − 𝜈𝜎 − 𝜎) = −

𝜎

𝐸
(2𝜈 + 1) 

(8) 

Which we can then calculate (pay attention to the signs!) 

 

c) Give the change in volume of the dielectric 

As the Poisson ratio is 0.5, the dielectric is incompressible. Meaning that the volume change is zero. 

We can show this by looking at the change in volume 

∆𝑉

𝑉
= {𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧} (10) 

∆𝑉 = {3.685 + 3.685 − 7.370} ∗ 10−4 ∗ 𝑉 = 0 (11) 

Zero volume change, as stated before, the film is incompressible! 

 

d) Suppose we introduce an additional shear stress of 1 kPa in the positive x direction on 

the x-y plane. What effect does this have on the already present strain state and change in 

volume? 

For this last part we have to look at the compliance matrix first which is given as  

(

 
 
 

𝜀𝑥
𝜀𝑦
𝜀𝑧
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧)

 
 
 
=

(

  
 

1/𝐸
−𝜈/𝐸
−𝜈/𝐸
0
0

0

−𝜈/𝐸
1/𝐸
−𝜈/𝐸
0
0

0

−𝜈/𝐸
−𝜈/𝐸
1/𝐸
0
0

0

0
0
0
1/𝐺
0

0

0
0
0
0
1/𝐺

0

0
0
0
0
0
1/𝐺)

  
 

(

 
 
 

𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜏𝑥𝑦
𝜏𝑥𝑧
𝜏𝑦𝑧)

 
 
 

 (12) 

As we can see, because the system is linear and isotropic, the normal and shear strains are 

decoupled and there will be no change for the compression in the z direction. We do however generate 

a shear strain in the x-y direction. First, we calculate the shear modulus 

𝐺 =
𝐸

2(1 + 𝜈)
=
1.2 ∗ 106

2(1 + 0.5)
= 4 ∗ 105 [Pa] = 400 [kPa] (13) 

𝛾𝑥𝑦 =
𝜏𝑥𝑦

𝐺
=
1000

4 ∗ 105
= 25 ∗ 10−4 (14) 

In an elastic isotropic system, the shear strain doesn’t have an influence on the volume change, so it 

remains zero. 

𝜀𝑥 , 𝜀𝑦 =
442.25

1.2 ∗ 106
≈ 3.685 ∗ 10−4 

𝜀𝑧 = −
442.25

1.2 ∗ 106
∗ (2 ∗ 0.5 + 1) ≈ −7.370 ∗ 10−4 

(9) 


