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Série 2b Solutions

Exercise 2b.1 - Poisson effect
Considering the statue seen in Figure 2b.1, we want to study the lateral strain of the column
holding it. The statue’s mass is 883 kg and its weight is uniformly spread on the column’s cross-section.
The material of the column is brittle. The Young’s modulus of the material is 1.10 GPa. Its Poisson’s
ratio is 0.34. The height of the column is 2.1 meter in the two cases.

Figure 2b.1 | Schematic of the column with the statue on top and the two different types of cross -

sectional areas.

Between cross-section a and b, which is the best solution to minimize the lateral strain to
which the column is submitted? Verify your assumption by calculating the lateral strain of the
column for the two following cases:

a) The column is full and its radius is 50 cm
b) The column is hollow in the center: Its external radius is 50 cm and its internal radius

is 49 cm.
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Solution

Free body diagram

R

Diagram of the column showing the external force (weight of the statue), the reaction and the internal
force in either side of the cut.

Objective:
a- Lateral strain ¢,
b- Lateral strain g

Given:
m, mass of the statue
E, Young’s modulus of the column material
v, Poisson’s ratio of the column material
H, Height of the statue (useless parameter)

a. r, radius of the cylinder
b. 1,,¢ external radius of the cylinder, r;,,;, internal radius of the cylinder

Formulas:
F=m-g (D

With F being the weight of the statue and g the gravitation constant
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N
oy = (2)
Where A4 is the cross-section of the column that is given by:
Ay =mr? Ay =n(rde —184) (3)

Where 7 is the radius of the column in (a) and r,,; and 7, are respectively the outer and inner
radius of the column in (b).

Hooke’s law in 1D

oy, =E-¢, (4)

where o is the normal internal stress of the material, € is the axial strain of the material and E is
the Young’s modulus of the material. And, finally, we have the axial-lateral strain relation, only valid
when the load is uniaxial, i.e. gy, # 0,0, = 0, = Ty = Ty, =Ty, =0

Ex =& ="V"§ (5)
For any of the three cases, we will have an equilibrium situation
N+F=0->N=—-F=-m-g (6)

Therefore, following this statement and combining with equation (2) we have

mg
oy =-—r (7)
We then apply Hooke’s law
o mg
ay=Esy—>ey=fy=—ﬁ (8)

And thus, we conclude that for any of the columns in the problem
Ex =& = VE 9
Calculation

The stress is compressive. We can now take into account case by case

a.
mgv
A, =nr? = — 10
e T (10)
b.
mgv
Ap = T[(rz t— 7,..2) = Exzp, = 11
ou m b T[( Out m)E ( )
Numerical application
a.
Exz, = 341- 10°° (12)
b.
Exz, = 8.61- 1075 (13)
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Exercise 2b.2 - Hooke’s Law in 3D

We apply a load F on a cubic piece of 1 mm width as shown in Figure 2b.2. The material’s Young
modulus is 200 GPa, Poisson’s ratio 0.25 and the measured stress tensor is given as follow. We suppose
the material to be homogeneous and isotropic. We worked at constant ambient temperature (20°C).

100 30 80
=30 180 50 |MPa
80 50 220

z
JZZ
// . Tzy
o
T
Txz
9y |
Oxx Txy Tyx
——— 4
X
W =1mm

Figure 2b.2 | Stress components on a 3D cube

a) Determine the compliance matrix of the material

b) Determine the stress vector of this cube, when submitted to this load

c) Determine the strain vector of this cube, when submitted to this load

d) What has been the volume variation of the solid after the load has been applied?
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Solution
a) Determine the compliance matrix of the material

We define the compliance matrix. Where v is the Poisson’s ratio of the material.

1 -v —v 0 0 0 (14)
1l—-v —v 1 0 0 0
[CI=%z1 0 0 0 20+ 0 0
\ 0 0 0 0 2(14v) 0
0 0 0 0 0 2(1+v)

The numerical values of the compliance matrix are found by substituting the values of Poisson’s
ratio and Young’s modulus and we get

005 —00125 —00125 O 0 0 (15)
~00125 .005 —-00125 0 0 0
_[-o00125 —o00125 005 0 0 0 o
e 0 0  .0125 0 o |GPa
0 0 0 0 .0125 0
0 0 0 0 0 .0125

b) Determine the stress vector of this cube, when submitted to this load

We start by the definition of stress tensor:

Oxx Txy Txz (1 6)
6=|Tyx Oyy Tyz
Tzx Tzy Ogzz

The stress tensor can also be written in the form of a vector

Ox (17)

Qu
Il

We take the given stress tensors and put it into vector form, to get the stress vector

100 (18)
180

. | 220

o= 30 MPa
80

50
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c) Determine the strain vector of this cube, when submitted to this load

We start with the generalized Hooke’s law
£=[Cle (19)

Inserting into this equation the matrix from equation 18 and the tensor from equation 15 we can
find the values of the strain vector

0

0.5
0.75

0.375
\ocss/
0.625

d) What has been the volume variation of the cube after the load has been applied?

g= -1073 (20)

We give the volume relative variation in correspondence to the stress parameters.
AV 1—-2v (21)

7=8x+ey+SZ=T(ax+ay+az)

Such that if we fill in either the strains calculated, or the given stresses, we find

1-—2v 22
5 (0x+0y+0,) > AV =125-10"2m3 (22)

AV =V
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Exercise 2b.3 - Poisson Ratio and Elasticity modulus

Consider a magnesium plate (seen in Figure 2b.3.1) in biaxial stress being subjected to the tensile
stresses ox = 24 MPa and oy =12 MPa. The corresponding strains in the plate are & = 440-10-6 and &, =
80-10-.

Figure 2b.3.1 | Block with Applied Stresses

a) Determine the Poisson’s ratio and Young’s modulus of the material
b) Determine the volume change in percentage of the material under these loads and strains

Suppose the magnesium plate is now fixed to the two fixed plates above and below, as shown in
Figure 2b.3.2, which prevent any deformation in the z axis. When the plane-stresses are now applied
a reaction force causing a stress of 12.6 MPa will occur on the body. Consider the same Poisson’s
ratio and Young’s modulus

c) Determine how these constraints influences the volume change of the material

P

#Tl»

A/A/A/k xt/x’

Figure 2b.3.2 | Block with constraints applied on the two sides of the plate
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Solution

a) Determine the Poisson’s ratio and Young’'s modulus of the material.

We start with the generalized Hooke’s equations
1

Ex = E(O'x - v(ay + az)) (1)
&y = %(ay —v(oy + O'Z)) (2)
Since we know that o, = 20, and 0, = 0 we can write
1 1
€ = (ax — vay) and &, = = (ay - 2v0"y) (3)
We can subtract the two parts from each other to eliminate v
1 1 1 1 o
Ex — Eey =z (ax - vay) - ﬁ(ay — Zvay) =z (ax — Vo, — 73) + vcry) (4)
We can then rewrite this expression in terms of E and rewrite to solve
1
e T2% _ (24— 6) x 10° _ 45 Gp c
T 1. T (440-40)x 106 a (5)
Ex — 7 Sy
Then we can rewrite either one of the formulas to find v
Eey = 0 —voy, (6)
o,— E¢
v=——— (7)
Oy
_ 24%10° - 45*109*440*10—6_035 (8)
Ve 12 106 e
b) Determine the volume change of the material in terms of its original volume V
The volume change of any linear elastic body is defined as
AV
7=£x+sy+ez 9)

Using the fact that the there’s no stress in the z direction (o, = 0) we start with the three simplified

strain components by means of the generalized Hooke's law

1
v =—(0, —
€ (0 vcry)

1
& =% (oy —voy)

-V
&, = ? (ax + ay)

Which if we calculate these, we find

(10)

(11)

(12)
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_ (24-035%12) % 10°

— —4 13
Ex 152100 4.4 %10 (13)
(12 — 0.35 * 24) = 10° .

= = - 14

& 1510 0.8 * 10 (14)

R 6= _ —4 15

&, 45*109(24+12)*10 2.8%10 (15)

Inserting this in the formula for the volume change we find that

AV = (e +&,+6)V =24%x10"*xV (16)

This means that the body will change 0.024% in terms of volume.

c) Determine how these constraints influences the volume change of the material

With the plates in place the block can no longer expand in the z direction and thus the strain in
this direction becomes zero (g, = 0). However, this constraints does ensure a counter force on
the plate at a given value of 6, = 12.6 MPa. To now calculate the volume change we need to
recalculate the other two strain components

£ = 2 {0~ v(oy +0,)) (17)

&, = £{o, —v(ox + 0,)) (18)

Which, with the provided information we find as

_ {24-0.35(12 + 12.6)} * 10°

Ex 45 10° =3.42x10"* (19)
12 —0.35(24 + 12.6)} * 10°
£y = t is 109 ) =-18%107° (20)
That means that the new volume change is
AV = (g + &)V =324%107* %V (21)
AV' — AV = 0.84 %107 * xV (22)

The new volume change is 0.032% and thus the constraint increases the volume by an additional
0.0084%
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Exercise 2b.4 - Pipe casing

A plastic cylindrical pipe is inserted as a liner inside a cast-iron pipe. We compress the plastic pipe
with a load F. We use the parameters listed in the following table and represented in Figure 2b.4.

Le

F————

Lo

Parameters Plastic pipe Cast-iron pipe
Length L,=7? L. =0.205m
Diameter Inner:d, = 110 mm
d; = 109 mm
Outer:d; = 115 mm
Young Modulus E, = 2.1GPa E. =170 GPa
Poisson’s ratio v, =04 v, = 0.3
_________ \ r

Figure 2b.4 | Plastic pipe in cast-iron pipe

We compress the plastic pipe with F so that the final length of both pipes is the same and also, at
the same time, the final outer diameter of the plastic pipe is equal to the inner diameter of the cast-
iron pipe so that no stress is applied on the cast-iron pipe.

a) Derive a formula for the required initial length L, with the Poisson’s ratio (not as a

function of F). Calculate the value of L,.
b) What is the final stress along in the vertical and the radial direction in the plastic and in

the cast-iron pipe?

c) What s the required force F?
d) Determine the ratio between final and initial volumes for the plastic pipe.
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Solution
a) Derive a formula for the required initial length L, with the Poisson’s ratio (not as a
function of F). Calculate the value of L,.

The lateral strain resulting from compression of the plastic pipe must close the gap between it and
the cast-iron one. Therefore, we consider that the lateral displacement for this calculation covers the
distance d, — d4, ie 1 mm. We call it Ad.

The increase in the outer diameter of the plastic pipe leads to an increase in the radius to
accommodate an increase in the circumference length. Therefore, we can write for the final diameter of
the plastic pipe that:

Ay fingr = di - (1 + &) = dy (1)

The accompanying compressive normal stress in the plastic pipe is obtained using the Poisson’s
ratio formula which describes the relation between compressive and radial strain.
Epr Epr _ Ad

Vv, = — - &, =— = (2)
p D,z
Ep,z Vp vpdl

Now, by definition, we determine the axial deformation of the plastic pipe.
8y = &p Ly (3)
Knowing also that
6y =Lc— Ly 4)
Equalizing both equations, we get

p_1+£p'z ()

sp'ZLp =L.— Lp - L

By substituting the strain, we get and we find

Lo ke 0.205[m] 0210
pT_Ad T _110—109[mm] m (6)
Vpdq 0.4 * 109[mm|]

b) What is the final stress along in the vertical and the radial direction in the plastic and in
the cast-iron pipe?
For the cast-iron pipe, there is no stress since it is not affected by the load.
Oz = Ocy = 0pr = 0Pa (7)
For the plastic pipe, there is only stress in the axial direction since it is extended freely laterally until

it meets the wall. The normal stress in the plastic pipe is thus calculated thanks to Hooke’s law in the
axial direction

Epr AL Le—Ly
= ——— or = — =
€pz v, Oz T T T (8)
Ad
Opz = Epépz = —Ep d (9
pdy
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With E,, being the Young modulus of the material that composes the plastic pipe. Finally filling in

the values we find the value of the normal stress in the pipe.

Opz = —Ep m = —48 MPa
AL 0.205 — 0.210[m] (10)
oraoy,, = EPE = 21[Gpa] * OZlO[m] = —50.0 MPa

(small rouding error depending on precision of value L, used)

c) Whatis the required force F?
We start by the definition of the axial strain

AL
€pz = L_O (11)

where L is the initial length of the zone studied, AL is the deformation the pipe is enduring, with
&p,z being the normal strain when the load is acting. As in our problem we only have stress in the axial
direction (z) we can use the 1-dimensional form of the Hooke’s Law

Opz = Epép; (12)

To calculate the strain in the radial direction we again use Poisson’s ratio
v

- . —__P
Epr = "Vp Epz = E, Op,z (13)

where ¢, is the substructure lateral strain when the load is acting, ¢, is the pipe axial strain when
the load is acting, v,, is the Poisson’s ratio of the pipe’s material. We know that we can define the applied

stress and rewrite to find the applied load F

Opz =5~ 2>=F=4,0p; =

— 0, (14)
A, Pz

The required downwards load to compress the plastic pipe as wanted is thus determined by

Ad md? Ad md,
F=0p.4p = EpépzAp = —Ep vpd; 4 - Py, 4

(15)

AL d?

orF = E,——

L, 4
Finally, by plugging in the numbers we find the value of the applied force
110 — 109[mm] = * 109[mm]
F = —2.1[Gpa] * * = —449.4kN
0.4 4 (16)
0.205 —0.210 7 *109[mm] * 109[mm]
or F = 2.1[Gpa] * 5210 * ) = —466.6kN

(small rouding error depending on precision of value Ly used)

F is negative, therefore facing downwards and thus compressive.
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d) Determine the ratio between final and initial volumes for the plastic pipe.

The initial volume and final volume of the pipe are given by
Yinitiar = LoAp
foinal = LCAP,final

The ratio of the final to initial volume is therefore

foinal _ LCAPfinaz
LPAP

Pinitial

LIO* 110[mm] * 110[mm]

Yo 0:205[m]

Yo iitiat 0.210[m]

= 0.995

4
LI* 109[mm] * 109[mm]
4

(17)

(18)

(19)
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Exercise 2b.5 - Dielectric actuator design

A Dielectric Actuator is an actuator which finds it's working principle in an applied electric field
between two stretchable electrodes. As a voltage is applied, the two electrodes are attracted to each
other through electrostatic attraction. A dielectric film prevents the flow of current.

The electrostatic force within the dielectric, under an applied electric field, is given as

_ 1

z 2 gdAp

Where A, is the planar cross-sectional area (x-y plane) and ¢, the dielectric permittivity. The charges
in the plane are given by

_ VSdAp
|2 dO
(3) t/_,-Top electrode (b}
d, I 4—— Dielectric Voltage on
(Sillcone) .
Contraction v

— Bottom electrode

‘ Actuation |_| Stretch

v v T Ii‘l v v -
ad § 1 | GND

Figure 2b.5 | (a) Sketch of the problem, (b) working principle of a Dielectric Actuator

Where d, stands for the dielectric thickness and V is the applied voltage. When the dielectric is
squeezed by the applied voltage, it also expands in-plane. In elastomers the compression and the
expansion are mechanically coupled due to their incompressibility. The tensile stress due to this
expansion equals to the compressive stress (this is one way to find the stress components):

Now suppose we have the actuator, as shown in figure 2.b.5, with a 200 um thick dielectric made
out of silicone which we actuate this under a voltage of 1 [kV]. The dielectric permittivity is 35.4*10-12
[N/V2], and the material has a Poisson’s ratio of 0.5, as well as an elastic modulus of 1.2 [MPa]. The
material behaves isotropic and has linear elastic properties. We ignore the stiffness and any influence
of the top electrodes.

a) Under the given load, calculate the tensile and compressive stresses in the dielectric

b) For the calculated stresses, find the strain components of the dielectric

c) Give the change in volume of the dielectric

d) Suppose we introduce an additional shear stress of 1 kPa in the positive x direction on
the x-y plane. What effect does this have on the already present strain state and change in
volume?
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Solution

a) Under the given load, calculate the stress in the dielectric

We know that we can safely ignore the stiffness of the top electrodes, the forces given by the
problem are as per

1o

F, =
z 2 gdAp

(1)

We then insert the definitions of respective charges into equation 1 to get the definitions of the
forces

F, = —— (szdzApz) Ly (V)Z 2)
= --—| = —_g —_—
“ 2 deozAp 2 @ dO

Then dividing the force by its respective surface, the tensile stress in the dielectric will be equal to

0, =— (3)

Where if we insert the definition of the force inside of equation 3, we will retrieve the tensile
Maxwell Stresses.

N

And then resulting from the given stress relation we find
2

1 %4
0r =0y =—0, = 55 (d—o) 5)

This differs from what we are used to, as generally in mechanics a vertical load doesn’t cause stress
in the other directions! However, since we're dealing with electrostatics these kinds of mechanical
forces are the result of the electrical charges.

With the provided values we can thus calculate the stresses present in the dielectric.

__1, (1000 442.25 [P
GZ__Egd(zoono-ﬁ) ~ —442.25 [Pa]

Ox = 0y = —0, = 442.25 [Pa]

(6)
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b) For the calculated stress, find the strain components of the dielectric

Starting from the Compliance matrix for isotropic materials, and knowing the relations between the
stresses are provided as in equation 3, we can simplify it and retrieve the strain equations

Exx 1 1 -V —U o
Gy |=z|\-v 1 -v ( o ) (7)
€2z v -V 1 —0
1 o
Ex = & =E(0—va+va) =z

) ()

o
&, =E(—va—v0—a) = _E(2V+1)

Which we can then calculate (pay attention to the signs!)
442.25
o T 12+106

44225 . ©)

~ 3.685 % 107*

&, =

c) Give the change in volume of the dielectric

As the Poisson ratio is 0.5, the dielectric is incompressible. Meaning that the volume change is zero.
We can show this by looking at the change in volume

AV
A = {sx t+é& + ez} (10)
AV = {3.685 + 3.685 —7.370} * 107**x V = 0 (11)

Zero volume change, as stated before, the film is incompressible!

d) Suppose we introduce an additional shear stress of 1 kPa in the positive x direction on
the x-y plane. What effect does this have on the already present strain state and change in
volume?

For this last part we have to look at the compliance matrix first which is given as

€x 1/E —v/E —v/E 0 0 Ox
&y —-v/E 1/E —v/E 0 0 0 Oy
& |_|-v/E —-vE 1E 0 0 0 P
ay |7 o 0o o VG 0 0 |ITy (12)
Yxz 0 0 0 0 1/6 0 J\1,
Vyz 0 0 0 0 0 1/G Tyz

As we can see, because the system is linear and isotropic, the normal and shear strains are
decoupled and there will be no change for the compression in the z direction. We do however generate
a shear strain in the x-y direction. First, we calculate the shear modulus

G E 1.210° 4 % 10° [Pa] = 400 [kP (13)
= = = * =
2(1+v) 2(1+05) 4 [ikPa]
_ Txy 1000

= 25x%10"% (14)

Yoy = 76" T 4% 105

In an elastic isotropic system, the shear strain doesn’t have an influence on the volume change, so it
remains zero.
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